
Evolving Time Surfaces in a Virtual Stirred Tank

Bidur Bohara
Farid Harhad

Department of Computer Science
Louisiana State University
Baton Rouge, LA-70803
bbohar1@tigers.lsu.edu,

fharhad@cct.lsu.edu

Werner Benger
Center for Computation &

Technology
Louisiana State University
Baton Rouge, LA-70803

werner@cct.lsu.edu

Nathan Brener
S. Sitharama Iyengar

Department of Computer Science
Louisiana State University
Baton Rouge, LA-70803

brener@csc.lsu.edu ,
iyengar@csc.lsu.edu

Marcel Ritter
Department of Computer Science

University of Innsbruck
Technikerstrasse 21a

A-6020 Innsbruck, Austria
marcel.ritter@uibk.ac.at

Kexi Liu, Brygg Ullmer
Center for Computation &

Technology
Department of Computer Science

Louisiana State University
Baton Rouge, LA-70803

kliu9@lsu.edu, ullmer@lsu.edu

Nikhil Shetty, Vignesh Natesan,
Carolina Cruz-Neira

Center for Adv. Comp. Studies
University of Louisiana at

Lafayette
Lafayette, LA 70504

nikhil.j.shetty@gmail.com

ABSTRACT
The complexity of large scale computational fluid dynamic
simulations demand powerful tools to investigate the numer-
ical results. Time surfaces are the natural higher-dimensional
extension of time lines, the evolution of a seed line of par-
ticles in the flow of a vector field. Adaptive refinement of
the evolving surface is mandatory for high quality under
reasonable computation times. In contrast to the lower-
dimensional time line, there is a new set of refinement cri-
teria that may trigger the refinement of a triangular initial
surface, such as based on triangle degeneracy, triangle area,
surface curvature etc. In this article we describe the compu-
tation of time surfaces for initially spherical surfaces. The
evolution of such virtual “bubbles” supports analysis of the
mixing quality in a stirred tank CFD simulation. We discuss
the performance of various possible refinement algorithms,
how to interface alternative software solutions and how to
effectively deliver the research to the end-users, involving
specially designed hardware representing the algorithmic pa-
rameters.

Keywords
visualization, CFD, large data, pathlines, timelines, surface
refinement

1. INTRODUCTION
1.1 Motivation
Computational Fluid Dynamics (CFD) is a computationally-
based design and analysis technique for the study of fluid
flow. CFD can provide high fidelity temporally and spatially
resolved numerical data, which can be based on meshes that

range from a few million cells to tens of millions of cells.
The data from CFD can range to several hundred thousand
time steps and be of sizes in order of terabytes.

Therefore, a key challenge here is the ability to easily mine
the time dependent CFD data; extract key features of the
flow field; display these spatially evolving features in the
space-time domain of interest. In this work, we present an
interdisciplinary effort to generate and visualize time sur-
faces of the fluid flow from the time dependent CFD data.
The implementation of time surfaces, such as an evolving
surface of a sphere, for analyzing the flow field is more rele-
vant in context of a stirred tank system. The integration of
surfaces over time generates an evolving surface that can il-
lustrate key flow characteristics such as how matter injected
in a stirred tank disperses, and in what regions of the tank is
the turbulence high. Such observations are crucial to iden-
tifying the best conditions for optimal mixing.

Figure 1: Two evolving spheres visualized just be-
fore their mixing in the Stirred Tank simulation sys-
tem.

The CFD dataset was obtained from a large eddy simula-
tion (LES) of flow inside a stirred tank reactor (STR). The
simulation is performed on 200 processors (64 bit 2.33 G
Hz Xeon quadcore) where each time-step is calculated in

approximately 36 seconds. Stirred tanks are the most com-
monly used mixing device in chemical and processing in-
dustries. Improvements in the design of stirred tanks can
translate into several billion dollar annual profit. However,
better designs of stirred tanks require detailed understand-
ing of flow and mixing behavior inside the tank. The present
study focuses on analyzing the dynamics of mixing inside
the tank. Turbulent flow inside the stirred tank was solved
numerically using LES to resolve small-scale turbulent fluc-
tuations and the immersed boundary method (IBM) in order
to model the rotating impeller blade in the framework of a
fixed curvilinear grid representing the tank geometry. The
grid is distributed over 2088 blocks and comprised of 3.1 mil-
lion cells in total. Flow variables like velocity and pressure
are defined at the center of each cell and computed for each
time step over a total of 5700 time steps representing 25 com-
plete rotations of the impeller. The handling and processing
of these voluminous, multi-block, non-uniform curvilinear
datasets to generate time surfaces and track set of parti-
cles in the fluid flow is the main challenge addressed in this
paper.

1.2 Related Work
One of the earliest works related to this problem is the gener-
ation of stream surfaces, in particular Hultquist’s attempt to
generate a triangular mesh representation of streamsurfaces.
Hultquist introduced an algorithm that constructs stream
surfaces by generating triangular tiles of adjacent stream-
lines or stream ribbons. In Hultquist’s algorithm, tiling is
done in a greedy fashion. When forming the next triangle,
the shortest leading edge is selected out of the two possible
trailing triangles and appended to the ribbon. Each ribbon
forming the stream surface is advanced until it is of equiv-
alent length to its neighboring ribbon along the curve they
share [13]. Particles are added to the trail of the stream
surface by splitting wide ribbons, and particles are removed
from the stream surface by merging two narrow (and adja-
cent) ribbons into one. Note that Hultquist’s algorithm was
developed for steady flows. Also, advancing the front of the
stream surface requires examining all the trailing ribbons.

Along the same lines, Schafhitzel et al [15] adopted the
Hultquist criteria to define when particles are removed or
added, but they derived a point-based algorithm that is de-
signed for GPU implementation. In addition to rendering
a stream surface, they applied line integral convolution to
show the flow field patterns along the surface.

Rather than remeshing a stream surface when the surface
becomes highly distorted, von Funck et al [23] introduced a
new representation of smoke in a flow as a semi transparent
surface by adjusting opacity of triangles that get highly dis-
torted and making them fade. Throughout the evolution of
the smoke surface, they do not change the mesh, but rather
use the optical model of smoke as smoke tends to fade in
high divergent areas [23]. However, the authors report that
this method does not work well if the seeding structure is a
volume structure instead of a line structure.

Core tangibles [21] we use in this paper are physical inter-
action elements such as Cartouche menus and interaction
trays, which serve common roles across a variety of tangible
and embedded interfaces. These elements can be integrated

to dynamically bind discrete and continuous interactors to
various digital behaviors. Many toolkits support low-level
tangible user interface design, allowing designers to assemble
physical components into hardware prototypes which can be
interfaced to software applications using event-based com-
munication. Notable examples include PHidgets [10], Ar-
duino [2], iStuff [1], SmartIts [3] etc. Core tangibles focus
on tangible interfaces for visualization, simulation, presen-
tation, and education, often toward collaborative use by sci-
entist end-users [21].

2. MATHEMATICAL BACKGROUND
In the domain of computer graphics one distinguishes four
categories of integration lines q ⊂M that can be computed
from a time-dependent vector field v ∈ T (M), mathemati-
cally a section of the tangent bundle T (M) on a manifold
M describing spacetime: path lines, stream lines, streak lines
and material lines. Each category represents a different as-
pect of the vector field:

path lines (also called trajectories) follow the evolution of
a test particle as it is dragged around by the vector
field over time.

stream lines (also called field lines) represent the instan-
taneous direction of the vector field; they are identical
to path lines if the vector field is constant over time.

streak lines represent the trace of repeatedly emitted par-
ticles from the same location, such as a trail of smoke.

material lines (also called time lines) depict the location
of a set of particles, initially positioned along a seed
line, under the flow of the vector field.

Each of these lines comes with different characteristics: stream
lines and path lines are integration lines that are tangential
to the vector field at each point

q̇ ≡ d

ds
q(s) = v(q(s)) (1)

Since the underlying differential equation is of first order,
the solution is uniquely determined by specifying the initial
condition q(0) = q0 by a seed point q0 ∈ M in spacetime.
Neither stream lines nor path lines can self-intersect (in con-
trast to e.g. geodesics, which are solutions of a second order
differential equation). However, a path line may cross the
same spatial location at different times, so the spatial pro-
jection of a path line may self-intersect.

In contrast to stream and path lines, streak and material
lines are one-dimensional cuts of two-dimensional integra-
tion surfaces S ⊂ M , dim(S) = 2. This surface is con-
structed from all integral lines that pass through an event
on this initial seed line q0(τ):

S = {q : R→M, q̇(s) = v(q(s)), q(0) = q0(τ)}

The resulting surface contains a natural parametrization
S(s, τ) by the initial seed parameter τ and the integra-
tion parameter s. It carries an induced natural coordi-

nate basis of tangential vectors {~∂τ , ~∂s}, with ~∂s ≡ q̇ = v.
For a streak line, the initial seed line q0(τ) is timelike as
new particles are emitted from the same location over time,

dq0(τ)/dt 6= 0, for a material line the seed line is spacelike
dq0(τ)/dt = 0, a set of points at the same instant of time.
The respective streak/time line is the set of points of the sur-
face q(t) = St=const. for a constant time. If the integration
parameter is chosen to be proportional to the time s ∝ t,
which e.g. is the case when performing Euler steps, then the
original seed line parameter τ provides a natural parameter
for the resulting lines, i.e. each point along a time line is
advanced by the same time difference dt at each integration
step.

Refinement of lines by introducing new integration points is
mandatory to sustain numerical accuracy of the results. The
ideas of the Hultquist algorithm [12] and its improvements
by Stalling [17] could be applied also to the spatio-temporal
case, however such would result in the requirement to per-
form timelike interpolation of the vector field. For data sets
that are non-equidistant in time such as adaptive mesh re-
finement data generated from Berger-Oliger schemes[6] find-
ing the right time interval for a given spatial location this be-
comes non-trivial. For now we refrain from non-equidistant
refinement in the temporal direction (such as done in [14]),
though this is an option – if not requirement – for future
work.

A time surface is the two-dimensional generalization of a
time line, a volumetric object in spacetime. The Hultquist
algorithm, if applied to a spatio-temporal surface, discusses
criteria on refining one edge, whereas here we have a much
richer set of possible surface characteristics that may trigger
creation or deletion of integration points. Some options are
to refine a surface at locations where

• a triangle’s edge

• a triangle’s area

• a triangle’s curvature

• a triangle degeneration (“stretching”)

becomes larger than a certain threshold. Section 5.1 reviews
our results experimenting with different such criteria.

3. SOLUTION
3.1 Data Model
We use the VISH [4] visualization shell as our implementa-
tion platform. It supports the concept of fiber bundles [8]
for the data model. The data model consists of seven levels,
each of which is comprised of compatible arrays that repre-
sent a certain property of the dataset [5]. These levels, which
constitute a Bundle, are Slice, Grid, Skeleton, Representa-
tion, Field, Fragment and Compound. The Field represents
arrays of primitive data types, such as int, double, bool, etc.,
and the collection of Fields describes the entire Grid. The
Grid objects for different time slices are bundled together
and are represented as a Bundle. As an example of our im-
plementation, each Field contains values of a property such
as coordinates, connectivity information, velocity, etc. The
collection of these Fields is a Grid object, and the collection
of Grid objects for all time slices is the Bundle of the entire
dataset.

The dataset used for visualizing the features of fluid flow
contains numerical data for 2088 curvilinear blocks consti-
tuting the virtual stirred tank. The input vector field is
fragmented and these fragments are the blocks of the Grid.
The input dataset for each time slice consists of coordinate
location, pressure and fluid velocity for each grid point in
the entire 2088 blocks. These properties are stored as Fields
in the Grid object for each time slice, and these Grid objects
are then combined into a Bundle.

When a multi-block is accessed for the first time, a Uniform-
Grid-Mapper is created which is a uniform grid having the
same size as a world coordinate aligned bounding box of the
multi-block. For each cell of the Uniform-Grid-Mapper a
list of curvi linear block cells (indices) is stored which inter-
sect the Uni-Grid-Mapper cell by doing one iteration over all
curvilinear grid cells and a fast min/max test. When com-
puting the local multi-block coordinates the corresponding
Uni-Grid-Mapper cell is identified first which then selects a
small number of curvilinear cells for the Newton iteration.
Uni-Grid-Mapper objects are stored in the Grid object of
the vector field and can be reused when accessing the same
multi-block again later.

3.2 Out of Core Memory Management
The original approach taken while visualizing the features
of fluid flow is to keep the entire vector field data in the
main memory and integrate over the vector field to extract
the features. However, with the necessity of visualizing the
time-dependent 3D vector field, the original approach has
restrictions, such as the size of the time-dependent data can
easily exceed the capacity of main memory of even state of
the art workstations. In [24], the authors present the concept
of an out-of-core data handling strategy to process the large
time dependent dataset by only loading parts of the data at
a time and processing it. Two major strategies presented
for out-of-core data handling are Block-wise random access
and Slice-wise sequential access. The authors emphasize the
Slice-wise sequential access strategy for handling the data
given in time slices, however, we have implemented both
Block-wise access and Slice-wise access of time-dependent
data while generating the time surfaces for visualizing the
fluid flow.

Figure 2: Time surface computed from a vector field
given in 2088 fragments (curvilinear blocks) covering
the Stirred Tank Grid (left). Only those fragments
that affect the evolution of the time surface (right)
are actually loaded into memory.

The virtual stirred tank system has 2088 blocks, and each
block has vector field data for every time slice. The data for

Figure 3: Particle advection of a 2-dimensional ele-
ment vs. a 1-dimensional element. In our case, our
surface element is in 3-dimensional space spanned
over time.

each time slice is accessed only once as a Grid object from
the input Bundle and processed to generate the time surface
at that particular time. The integration of the time surface
does not process all the blocks, instead only the blocks that
are touched at the given time slice are loaded and processed.

At every time slice two Grid Objects are handled, one con-
taining the input data of the vector field and the other con-
sisting of seed points and connectivity information among
the seed points. The connectivity information is used to
generate the triangle mesh for surface generation. In the
case of no surface refinement, the connectivity information
is constant throughout the time slices and is stored once and
used multiple times. This conserves the memory and also
reduces the memory access. However, with surface refine-
ment the number of points and their connectivity changes
over time resulting in an increase in memory usage.

3.3 Particle Seeding and Advection
Our set of particle seeds qi,t0 for i = 0, ..., n − 1, lie on a
spherical sphere. At any given time t > t0, the time surface
is represented as as a triangular mesh formed by the parti-
cles qi,tthat have been advected using equation 1. Figure 3
illustrates the difference between our seeding approach ver-
sus Hultquist’s where we are evolving a surface element (a
triangle) over time as opposed to spanning a surface out of
a line segment element.

3.4 Triangular Mesh Refinements
As time elapses, the triangular mesh of particles enlarges and
twists according to the flow field. To preserve the quality of
the mesh, we refine it by adding new particles and advecting
them while updating the mesh connectivity. Of the possible
refinements criteria mentioned above, we have implemented
the following:

edge length , where if the distance between pairwise par-
ticles of a triangle are larger than a threshold edge
length, we insert a new midpoint and subdivide the
triangle accordingly.

triangle area , where if the area of the triangle formed
by the new positions of the particle trippet is larger
than a threshold area, we insert three midpoints and
subdivide the triangle to a new set of four adjacent
triangles.

4. ALTERNATIVE APPROACHES
In order to verify and compare our results with other imple-
mentations, we also investigate alternative implementations.
Paraview [11] is one of the well known and widely used vi-
sualization tools in the scientific community. It addresses
issues pertaining to the visualization of large scale data-sets
using high-performance computing environments. It can be
perceived as a framework around the well known Visualiza-
tion Toolkit (VTK) [16] library. It not only provides a GUI
to VTK, but also provides a convenient environment for in-
tuitive visual programming of the visualization pipeline.

Paraview has implicit mechanisms for handling scale, both in
terms of data and computation [7]. It achieves this by pro-
viding generalized abstractions for parallelization and dis-
tribution. Therefore a scientist using Paraview can switch
from visualizing smaller data-sets on a his/her desktop to
a much larger data-set utilizing a large HPC infrastructure,
with minimum effort.

We describe ongoing work and approaches to porting and
visualizing the given F5 (fiber-bundle) data-set, as described
in 3.1, in Paraview.

4.1 Porting the fiber-bundle (F5) to Paraview
The 500GB fiber-bundle data-set is provided in the F5 for-
mat. This format has no native support in Paraview and
some form of conversion would be required to utilize the
data.

One approach to solve this problem is to use a format con-
verter and separately convert the entire file to a natively
supported format. However, this approach causes redun-
dant data and can waste considerable amount of space on
the storage disk. An alternative solution is to write a cus-
tom reader into Paraview such that the data is read and
mapped into internal VTK data-structures. This approach
adds an additional computation time into the visualization
pipeline and can cause unnecessary slowdown of the visual-
ization process.

An ideal solution would be a combination of the above men-
tioned approaches such that both space and time optimiza-
tion can be achieved. Such a solution is possible in our case
due to a certain characteristic of the F5 format (explained
shortly) and the use of XDMF (eXtensible Data Model and
Format) [9] which is supported in Paraview.

An F5 format is characteristically a specific description or
organization of the HDF5 data format. All H5 readers and
commands which typically work on HDF5 formats also work
on F5.

The XDMF data format is an XML format for data generally
known as a ”light data”. It provides light weight descriptions
of the ”heavy data” which is typically a HDF5 file containing
the actual data. A XDMF file can thus be seen as an index
into the HDF5 file and is usually much smaller in size, taking
very less time to get generated.

Paraview is supplied with the generated XDMF file through
which it can access the data in the corresponding HDF5
(or F5) file. No other reader or converter is necessary. An

added advantage of this approach is that parallel file readers
(if supported) and other parallel algorithms can be used to
quickly access and process very large data-sets. We thus
leverage on the parallel and distributed framework already
provided in Paraview.

4.2 Details of XDMF for F5 fiber-bundle
An XDMF description of the F5 fiber-bundle is shown below.

<?xml version="1.0" ?>

<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" [

<!ENTITY HeavyData "50New.f5">

]>

<Xdmf Version="2.0">

<Domain>

<Grid Name="TimeSeries" Type="Temporal">

<Grid Name="Multiblock" Type="Spatial">

<Time Value="000000000.0000000000"/>

<Grid Name="Block00001">

<Topology TopologyType="3DSMesh"/>

<Geometry>

<DataItem Format="HDF">

&HeavyData;:/f5/path/to/Points/Block00001

</DataItem>

</Geometry>

<Attribute Name="Pressure">

<DataItem Format="HDF">

&HeavyData;:/f5/path/to/Pressure/Block00001

</DataItem>

</Attribute>

<Attribute Name="Velocity">

<DataItem Format="HDF">

&HeavyData;:/f5/path/to/Velocity/Block00001

</DataItem>

</Attribute>

</Grid>

<Grid Name="Block00002">

...

</Grid>

</Grid>

<Grid Name="TimeSeries" Type="Temporal">

<Grid Name="Multiblock" Type="Spatial">

<Time Value="000000001.0000000000"/>

....

....

</Grid>

</Grid>

</Domain>

</Xdmf>

As seen in the description above, the XDMF consists of a
collection o f Temporal-Grids which represents each time
step. Each Temporal-Grid contains a collection of Spatial-
Grids which is a representation of multiblock data. Each
multiblock data consists of curvilinear blocks. The data for
these blocks are in the HDF5 file specified within DataItems.

As of now, results from the Paraview approach are still pend-
ing and subject of further investigation.

5. RESULTS
5.1 Surface Refinement
For the different refinement criteria test cases, we bench-
marked our implementation with a 30-timestep subset (85
MB per timestep) of the stirred tank data and on a 64-bit
dual core (2GHz each) pentium laptop machine with 4GB
of RAM. We advected one sphere for the first 30 timesteps
of the simulation. Due to the small size of our test data,
we could not notice a difference in time surface meshing
quality from the visualization itself, but from the data in
tables 1 and 2, we notice a slight performance improvement
of the area criteria over the edge length criteria. Though
the number of particles is slightly higher in the second case,
this suggests that the quality of the surface with the area
criterion is better.

threshold tot points avg time/slice(sec) tot time(sec)
0.005 4269 6.480 200.868
0.01 822 1.519 47.1
0.02 258 1.165 36.101

Table 1: Timing Analysis for Edge Length Criteria

threshold tot points avg time/slice(sec) tot time(sec)
0.005 4269 6.864 212.785
0.01 837 1.454 45.08
0.02 258 1.150 35.646

Table 2: Timing Analysis for Triangle Area Criteria

From either tables 1 or 2, picking a threshold too small com-
pared to the characteristic of the triangle being examined,
results in maximum refinement, while a large enough thresh-
old leads to no refinement at all.

5.2 Timing Analysis
For the overall integration and refinement of the time sur-
face, we used a larger dataset of size 12GB with 150 timesteps.
We ran the implementation on a 64bit quadcore workstation
with 64 GB of RAM. We used the edge length criterion with
a threshold of 0.01.

time no. of points time for slice(sec) time/point(ms)
0 516 0.4 7.0
50 3468 2.0 5.9
100 15822 7.4 4.8
125 41574 18.8 4.7
150 129939 49.7 4.0

Table 3: Timing Analysis for Threshold=0.01

The listing in the above table is for 12 GB of input data
from an initial time of 0 to a final time of 150. Initially the
number of points is 516, which increases over time as more
points are generated for surface refinement. As the number
of points increases, the computation time for the next time
slice increases. However, the time per point seems to be
slowly decreasing. This may be because more and more
points tend to locate in the same block and the data of one
block is shared by many points, resulting in less memory
access per point.

Figure 4: Images showing evolution of two spheres
at time slices 0, 50, 100, 125 and 150, respectively
from left-top to bottom, as seen top-view of the
stirred tank. First image shows the seed spheres,
and the last image shows two sphere just before the
surfaces are about to mix.

6. DEPLOYMENT TO END USERS
Results of the algorithm can be investigated better if we ex-
plore the entire time evolution of the surface interactively,
by navigating through space and time. In most visualization
environments, the graphical user interface is tightly coupled
with the underlying visualization functionality. One feature
of VISH is that it decouples the interface from the under-
lying visualization application. At least in principle, this
makes it as easy to couple VISH to a CAVE immersive en-
vironment, a web based distributed interface, or physical
interaction devices as to the provided traditional 2D graph-
ical use interface. As an example of this, we have based a
significant portion of our interaction with the present large
dataset stirred tank with “viz tangible” interaction devices.
An example of this is pictured in Figure 5. Earlier stages of
this work have been described in [22, 20, 19, 18].

An application programming interface (API) is under de-
velopment which supports coupling our tangibles to VISH
and other visualization environments. In this API, when
interaction control messages are sent (triggered by physi-
cal events, such as RFID entrance/exit or the turning of
a knob), they trigger corresponding methods in VISH. We

Figure 5: User physically manipulating VISH appli-
cation through “viz tangibles” interaction devices

use cartouches – RFID-tagged interaction cards [19, 20] –
as physical interactors which describe data and operations
within the VISH environment. Users can access, explore
and manipulate datasets by placing appropriate cartouches
on an interaction tray (Figures 5, 6), and making appropri-
ate button presses, wheel rotations, etc.

Figure 6: Cartouche cards for viewpoint control and
parameter adjustment operations

In our present implementation, we have used two classes of
cartouche objects. These are summarized below:

1. Viewpoint operations: Specific supported view point
controls include rotation, zooming, and translation. In
the case of rotation and translation, individual wheels
are bounds to the (e.g.) x, y, z axis. In the context
of zooming or time step navigation, wheels represent
different scales of space and time navigation.

2. Parameter Adjustment operations: Our current imple-
mentation includes time surface seedings and surface
transparency adjustment. For time surface seedings,
we steer center of seeds, number of subdivisions, etc.

to parameter wheels. Within surface transparency ad-
justment, wheels are bounded to different scales of sur-
face transparency.

In future, we hope quantities in high dimensional parameter
space such as curvature and torsion of the surface can also
be explored effectively with the integration of “viz tangibles”
and the API.

7. CONCLUSION
While most of the previous visualization techniques for fluid
flow have concentrated on flow streamlines and pathlines,
our approach has been directed towards generating the time
surfaces of the flow. The interdependencies of integration
over a vector field require random access to amounts of
data beyond a single workstation’s capabilities, while at
the same time requiring shared memory for required refine-
ments. This limits available hardware and impacts paral-
lelization efforts. The evolution of a seed surface required
refinement of its corresponding triangular mesh to preserve
the quality of the time surface over time. From the results
we noticed a slight superior quality of the area refinement
criterion over the edge length criterion.

8. ACKNOWLEDGMENTS
We thank the VISH development team, among them Georg
Ritter, University of Innsbruck, and Hans-Peter Bischof,
Rochester Institute of Technology, for their support; Ami-
tava Jana and Sanjay Kodiyalam from Southern University,
Baton Rouge for their continued vision for interactive us-
age in the CAVE VR environment by providing resources to
drive further development and optimization of the software
environment. This research employed resources of the Cen-
ter for Computation & Technology at Louisiana State Uni-
versity, which is supported by funding from the Louisiana
legislature’s Information Technology Initiative. Portions of
this work were supported by NSF/EPSCoR Award No. EPS-
0701491 (CyberTools), NSF MRI-0521559 (Viz Tangibles)
and IGERT (NSF Grant DGE-0504507).

9. ADDITIONAL AUTHORS
Additional authors: Sumanta Acharya and Somnath Roy,
Department of Mechanical Engineering, at Louisiana State
University; acharya@me.lsu.edu,sroy13@tigers.lsu.edu

10. REFERENCES
[1] R. Ballagas, M. Ringel, M. Stone, and J. Borchers.

iStuff: a physical user interface toolkit for ubiquitous
computing environments.

[2] M. Banzi. Getting Started with Arduino. Make Books -
Imprint of: O’Reilly Media, Sebastopol, CA, 2008.

[3] M. Beigl and H. Gellersen. Smart-its: An embedded
platform for smart objects. In Smart Objects
Conference (sOc), volume 2003. Citeseer, 2003.

[4] W. Benger, G. Ritter, and R. Heinzl. The Concepts of
VISH. In 4th High-End Visualization Workshop,
Obergurgl, Tyrol, Austria, June 18-21, 2007, pages
26–39. Berlin, Lehmanns Media-LOB.de, 2007.

[5] W. Benger, M. Ritter, S. Acharya, S. Roy, and
F. Jijao. Fiberbundle-based visualization of a stir tank
fluid. In WSCG 2009, Plzen, 2009.

[6] M. J. Berger and J. Oliger. Adaptive mesh refinement
for hyperbolic partial differential equations. J.
Comput. Phys., 53:484–512, 1984.

[7] J. Biddiscombe, B. Geveci, K. Martin, K. Morel, and
D. Thompson. Time dependent processing in a
parallel pipeline architecture. IEEE Transactions on
Visualization and Computer Graphics, 13:2007.

[8] D. M. Butler and M. H. Pendley. A visualization
model based on the mathematics of fiber bundles.
Computers in Physics, 3(5):45–51, sep/oct 1989.

[9] J. A. Clarke and R. R. Namburu. A distributed
computing environment for interdisciplinary
applicationsâĂİ, concurrency and computation:
Practice and experience vol. 14, grid computing
environments special issue. Currency and
Computation: Practice and Experience, (14):13–15,
2002.

[10] S. Greenberg and C. Fitchett. Phidgets: easy
development of physical interfaces through physical
widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technology,
pages 209–218. ACM New York, NY, USA, 2001.

[11] A. HENDERSON. Paraview guide, a parallel
visualization application, 2005.

[12] J. P. Hultquist. Constructing stream surfaces in
steady 3d vector fields. In Visualization ’92, pages
171–178. IEEE Computer Society, 1992.

[13] J. P. M. Hultquist. Constructing stream surfaces in
steady 3d vector fields. In VIS ’92: Proceedings of the
3rd conference on Visualization ’92, pages 171–178,
Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press.

[14] H. Krishnan, C. Garth, and K. I. Joy. Time and streak
surfaces for flow visualization in large time-varying
data sets. Proceedings of IEEE Visualization ’09, Oct.
2009.

[15] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl.
Point-based stream surfaces and path surfaces. In GI
’07: Proceedings of Graphics Interface 2007, pages
289–296, New York, NY, USA, 2007. ACM.

[16] W. Schroeder, K. Martin, and W. Lorensen. The
visualization toolkit: An object oriented approach to
3d graphics, 1996.

[17] D. Stalling. Fast Texture-Based Algorithms for Vector
Field Visualization. PhD thesis, Free University
Berlin, 1998.

[18] C. Toole, B. Ullmer, R. Sankaran, K. Liu,
S. Jandhyala, C. W. Branton, and A. Hutanu.
Tangible interfaces for manipulating distributed
scientific visualization applications. Submitted to Proc.
of TEI’10, 2010.

[19] B. Ullmer, Z. Dever, R. Sankaran, C. Toole,
C. Freeman, B. Casady, C. Wiley, M. Diabi, A. J.
Wallace, M. Delatin, B. Tregre, K. Liu, S. Jandhyala,
R. Kooima, C. W. Branton, and R. Parker. Cartouche:
conventions for tangibles bridging diverse interactive
systems. Submitted to Proc. of TEI’10, 2010.

[20] B. Ullmer, A. Hutanu, W. Benger, and H.-C. Hege.
Emerging tangible interfaces for facilitating
collaborative immersive visualizations. NSF Lake
Tahoe Workshop on Collaborative Virtual Reality and
Visualization, 2003.

[21] B. Ullmer, R. Sankaran, S. Jandhyala, B. Tregre,
C. Toole, K. Kallakuri, C. Laan, M. Hess, F. Harhad,
U. Wiggins, et al. Tangible menus and interaction
trays: core tangibles for common physical/digital
activities. In Proceedings of the 2nd international
conference on Tangible and embedded interaction,
pages 209–212. ACM New York, NY, USA, 2008.

[22] B. Ullmer, R. Sankaran, S. Jandhyala, B. Tregre,
C. Toole, K. Kallakuri, C. Laan, M. Hess, F. Harhad,
U. Wiggins, and S. Sun. Tangible menus and
interaction trays: core tangibles for common
physical/digital activities. In Proc. of TEI ’08, pages
209–212, 2008.

[23] W. von Funck, T. Weinkauf, H. Theisel, and H.-P.
Seidel. Smoke surfaces: An interactive flow
visualization technique inspired by real-world flow
experiments. IEEE Transactions on Visualization and
Computer Graphics (Proceedings Visualization 2008),
14(6):1396–1403, November - December 2008.

[24] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel.
Feature flow fields in out-of-core settings. In
H. Hauser, H. Hagen, and H. Theisel, editors,
Topology-based Methods in Visualization, Mathematics
and Visualization, pages 51–64. Springer, 2007.
Topo-In-Vis 2005, Budmerice, Slovakia, September 29
- 30.

